
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5213 54

Energy Efficient Scheduling of Map Reduce for

Evolving Big Data Applications

Mrs.P.Sheela Rani
1
, S.Shalini

2
, J.Rukmani@keerthika

3
, A.Shanthini

4

Assistant Professor, Department of Information Technology, Panimalar Institute of Technology, Chennai, India1

Student, Department of Information Technology, Panimalar Institute of Technology, Chennai, India2,3,4

Abstract: In recent years the data mining applications become stale and obsolete over time. Energy wastage is the

major problem more of the IT firms. More workload and more computational will increase high energy cost.

Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid

the expense of re-computation from scratch. In this paper, we propose Energy Map Reduce Scheduling Algorithm, a
novel incremental processing extension to Map Reduce, the most widely used framework for mining big data. Map

reduce is a programming model for processing and generating large amount of data in parallel time. In this paper,

EMRSA is algorithm provide more energy and less maps. Priority based scheduling is a task will allocate the schedules

based on necessary and utilization of the Jobs. For reducing the maps, it will reduce the system work so easily energy

has improved. Final results show the experimental comparison of the different algorithms involved in the paper.

Keywords: BigData, EMRSA, MapReduce, incremental processing.

I.INTRODUCTION

Nowadays vast quantity of digital data is being

accumulated in several important areas, including e-

commerce, social network, finance,banking, health care,

education, and environment. It's become progressively

popular to mine such massive data so as to achieve

insights to assist business selections or to produce higher

customized, higher quality services. In recent years, a
large variety of computing frameworks [1], [2], [3], [4],

[5], [6], [7], [8], [9], [10] are developed for large

information analysis. Among these frameworks,

mapreduce [1] (with its ASCII text file implementations,

like Hadoop) is that the most generally utilized in

production because of its simplicity, generality, and

maturity. We tend to focus on up map reduce during this

paper.It is now implemented with the bigdata applications.

Big data is constantly evolving. Due to the advent of new

technologies, devices, and communication means like

social networking sites, the amount of data produced by
mankind is growing rapidly every year. Though all this

information produced is meaningful and can be useful

when processed, it is being neglectedBig data means really

a big data, it is a collection of large datasets that cannot be

processed using traditional computing techniques. Big data

is not merely a data, rather it has become a complete

subject, which involves various tools, techniques and

frameworks.As new data and updates are being collected,

the input data of a big data mining algorithm will

gradually change, and the computed results will become

stale and obsolete over time.

Incremental processing is a promising approach to

refreshing mining results. It utilizes previously saved

states to avoid the expense of re-computation from scratch.

In this paper, we propose Energy Map Reduce Scheduling

Algorithm, a novel incremental processing extension to

Map Reduce, the most widely used framework for mining

big data. MapReduce to support incremental processing.

However, it has two main limitations.

First, Incoop supports only task-level incremental

processing. . That is, it saves and reuses states at the

coarseness of individual Map and reduce tasks. every task

generally processes an oversized number of key-valuepairs

(kvpairs). If Incoop detects any data changes within the

input of a task, it'll rerun the whole task. whereas this

approach simply leverages existing MapReduce options

for state savings, it should incur a large quantity of

redundant computation if solely a small fraction of kv-
pairs have modified during a task. Second, Incoop

supports solely one-step computation, whereas important

mining algorithms, like PageRank, need iterative

computation. Incoop would treat every iteration as a

separate MapReduce job. However, a small number of

input datachanges could gradually propagate to affect a

large portion of intermediate states when variety of

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5213 55

iterations, leading to expensive global re-computation

after. we tend to propose i2MapReduce, an extension to

MapReduce that supports fine-grain incremental

processing for each onestep and iterative computation.

II.PROPOSED METHODOLOGY

In our current situation energy wastage is the major

problem more of the IT firms. More workload and more

computational will increase high energy cost. Main aim of

ours, to reduce the energy cost from efficient Map

reducing concepts. To optimize the mining results, we

evaluate MapReduce using a one-step algorithm and three

iterative algorithms with diverse computation

characteristics for efficient mining also improve the

energy. In this paper we also include the algorithm for
incremental processing approach named as Energy map

reduce scheduling algorithm .EMRSA is algorithm

provide more energy and less maps. Priority based

scheduling is a task will allocate the schedules based on

necessary and utilization of the Jobs. For reducing the

maps, it will reduce the system work so easily energy has

improve. Final results shows the experimental comaprison

of the different algorithms involved in the paper.

III.RELATED WORK

(1) ENERGY MAP REDUCE SCHEDULING

ALGORITHM

This paper involves the input files with the .arff extension,

that is, artributte relation file format. An ARFF (Attribute-

Relation File Format) file is an ASCII text file that

describes a list of instances sharing a set of attributes.
ARFF files have two distinct sections. The first section is

the Header information, which is followed

the Data information.The Header of the ARFF file

contains the name of the relation, a list of the attributes

(the columns in the data), and their types.

Hadoop plugin is implemented in the eclipse environment.

Hadoop is the flexible and available architecture for large

scale computation on data processing on a netwrk of

commodity hardware. Eclipse is an integrated

development environment (IDE). It contains a base

workspace and an extensible plug-in system for
customizing the environment. Here in this paper we are

implementing hadoop plugin by including tha jar files in

eclipse and which creates a virtual memory of 1GB.

IV.CLASSIFICATIONS

In this paper we show the efficient methods of classifying

the evaluvated results by using the following two

classification methods:

(i) Support Vector Machine(SVM)

(ii) Naive Bayesian.

(2.1) Support Vector Machine(SVM):

A support vector machine is

a Classification method.Supervised algorithm used for:

 Classification and Regression (binary and multi-

class problem)

 anomalie detection (one class problem)

An SVM training algorithm builds a model that assigns

new examples into one category or the other, making it a

non-probabilistic binary linear classifier.

An SVM model is a representation of the examples as

points in space, mapped so that the examples of the

separate categories are divided by a clear gap that is as

wide as possible.

The support vector machine has been developed as robust

tool for classification and regression in noisy, complex

domains. The two key features of support vector machines
are generalization theory, which leads to a principled way

to choose an hypothesis; and, kernel functions, which

introduce non-linearity in the hypothesis space without

explicitly requiring a non-linear algorithm.

http://gerardnico.com/wiki/data_mining/classification
http://gerardnico.com/wiki/data_mining/supervised
http://gerardnico.com/wiki/data_mining/algorithm
http://gerardnico.com/wiki/data_mining/classification
http://gerardnico.com/wiki/data_mining/regression
http://gerardnico.com/wiki/data_mining/class
http://gerardnico.com/wiki/data_mining/anomaly_detection
https://en.wikipedia.org/wiki/Probabilistic_classification
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Linear_classifier

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5213 56

 (2.1.1) Support Vectors

The black line that separate the two cloud of class is right

down the middle of a channel. The seperations is in

2D,aline, in 3D a plane, in four or more dimension an a

hyper plane. Mathematically, the separation can be found

by taking the two critical members, one for each class.

This points are called support vectors.These are the critical
points (members) that define the channel.The separation is

then the perpendicular bisector of the line joining these

two support vectors.That's the idea of support vector

machine.

The SVM does not fall into the class of „just another

algorithm‟ as it is based on firm statistical and

mathematical foundations concerning generalisation and

optimisation theory. Moreover, it has been shown to

outperform existing techniques on a wide variety of real

world problems. SVMs will not solve all of your

problems, but as kernel methods and maximum margin
methods are further improved and taken up by the data

mining community they will become an essential tool in

any data miner‟s toolkit.

(2.2) Naive Bayesian

The Naive Bayesian classifier is based on Bayes‟ theorem

with independence assumptions between predictors. A

Naive Bayesian model is easy to build, with no

complicated iterative parameter estimation which makes it

particularly useful for very large datasets. Despite its

simplicity, the Naive Bayesian classifier often does
surprisingly well and is widely used because it often

outperforms more sophisticated classification methods.

Algorithm:

Bayes theorem provides a way of calculating the posterior

probability, P(c|x), from P(c), P(x), and P(x|c). Naive

Bayes classifier assume that the effect of the value of a

predictor (x) on a given class (c) is independent of the

values of other predictors. This assumption is called class

conditional independence.

• P(c|x) is the posterior probability of class (target) given

predictor (attribute).

• P(c) is the prior probability of class.

• P(x|c) is the likelihood which is the probability of

predictor given class.

• P(x) is the prior probability of predictor.

Example:

The posterior probability can be calculated by first,

constructing a frequency table for each attribute against

the target. Then, transforming the frequency tables to
likelihood tables and finally use the Naive Bayesian

equation to calculate the posterior probability for each

class. The class with the highest posterior probability is

the outcome of prediction.

The zero-frequency problem

Add 1 to the count for every attribute value-class

combination (Laplace estimator) when an attribute value

(Outlook=Overcast) doesn‟t occur with every class value

(Play Golf=no).

Numerical Predictors

Numerical variables need to be transformed to their

categorical counterparts (binning) before constructing their
frequency tables. The other option we have is using the

distribution of the numerical variable to have a good guess

of the frequency. For example, one common practice is to

assume normal distributions for numerical variables.

The probability density function for the normal

distribution is defined by two parameters (mean and

standard deviation).

Example:

Humidity

Mean StDev

Play

Golf

yes 86 96 80 65 70 80 70 90 75 79.1 10.2

no 85 90 70 95 91

86.2 9.7

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5213 57

V.SYSTEM ARCHITECTURE

1. MAP REDUCE TASK

Fig. Map Reducing

MapReduce is a programming model and an associated

implementation for processing and generating large data

sets with a parallel, distributed algorithm on a cluster.

MapReduce is the heart of Hadoop®. It is this

programming paradigm that allows for massive scalability

across hundreds or thousands of servers in a Hadoop

cluster. The first is the map job, which takes a set of data

and converts it into another set of data, where individual

elements are broken down into tuples (key/value pairs).
The reduce job takes the output from a map as input and

combines those data tuples into a smaller set of tuples. As

the sequence of the name MapReduce implies, the reduce

job is always performed after the map job.

2.SCHEDULING

Fig. scheduling

Process scheduling is an essential part of a

Multiprogramming operating system. Such operating

systems allow more than one process to be loaded into the
executable memory at a time and loaded process shares the

CPU using time multiplexing. Priority Scheduling. The

basic idea is straightforward: each process is assigned

a priority, and priority is allowed to run. Equal-

Priorityprocesses are scheduled in FCFS order. The

shortest-Job-First (SJF)algorithm is a special case of

general priority scheduling algorithm.

VI.PREVIOUS STUDY

Resilient dis-tributed datasets: A fault-tolerant abstraction

for. in-memory cluster computing

Matei Zaharia Mosharaf Chowdhury Tathagata Das

We present Resilient Distributed Datasets (RDDs), a

distributed memory abstraction that allows programmers

to perform in-memory computations on large clusters
while retaining the fault tolerance of data flow models like

MapReduce. RDDs are motivated by two types of

applications that current data flow systems handle

inefficiently: iterative algorithms, which are common in

graph applications and machine learning, and interactive

data mining tools. In both cases, keeping data in memory

can improve performance by an order of magnitude. To

achieve fault tolerance efficiently, RDDs provide a highly

restricted form of shared memory: they are read-only

datasets that can only be constructed through bulk

operations on other RDDs. Our implementation of RDDs

can outperform Hadoop by 20× for iterative jobs and can

be used interactively to search a 1 TB dataset with
latencies of 5–7 seconds.

Drawbacks:

 Memory Sharing is more challenging one in this project.

 More Computational Cost.

REX: Recursive, Delta-Based Data-Centric Computation

Svilen R. Mihaylov Zachary G. Ives Sudipto Guha

In today‟s Web and social network environments, query

workloads include ad hoc and OLAP queries, as well as
iterative algorithms that analyze data relationships (e.g.,

link analysis, clustering, learning). Modern DBMSs

support ad hoc and OLAP queries, but most are not robust

enough to scale to large clusters. Conversely, “cloud”

platforms like MapReduce execute chains of batch tasks

across clusters in a fault tolerant way, but have too much

overhead to support ad hoc queries. Moreover, both

classes of platform incur significant overhead in executing

iterative data analysis algorithms. Most such iterative

algorithms repeatedly refine portions of their answers,

until some convergence criterion is reachedWe seek to
unify the strengths of both styles of platforms, with a focus

on supporting iterative computations in which changes, in

the form of deltas, are propagated from iteration to

iteration, and state is efficiently updated in an extensible

way.We experimentally validate our techniques, and show

speedups over the competing methods ranging from 2.5 to

nearly 100 time .

Drawbacks:

 User-defined functions are also typically harder to write
for DBMSs than for cloud platforms.

 High redundant of data

 High amount of I/O Overhead

VII.SOFTWARE IMPLEMENTATION

https://en.wikipedia.org/wiki/Programming_model
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Cluster_(computing)
https://www-01.ibm.com/software/data/infosphere/hadoop/

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5213 58

Hadoop is a powerful framework that allows for automatic

parallelezation of computing task. Unfortunately

programming for it poses certain challenges, namely it is

really hard to understand and debug Hadoop programs.

One way to easy things a little bit is to have a simplified

version of the hadoop cluster that could run locally on the

developer's machine. This tutorial describes how to set-up

such cluster on the computer running Microsoft Windows,

also it describes how to integrate this cluster with

the Eclipse development environment. Eclipse is a prime

environment for Java development.

SETTING UP HADOOP PLUGIN:

1. Open another explorer window, either through "My

Computer" icon or by using the "Start -> Run" menu.

Navigate to your Eclipse installation and then open

the "plugin" folder of your Eclipse installation.

2. Copy the file "hadoop-0.19.1-eclipse-plugin.jar, from

the Hadoop eclipse plugin folder to

the Eclipse plugins folder.
3. Close both explorer windows

4. Start Eclipse.

5. Click on the open perspective icon , which is

usually located in the upper-right corner the eclipse

application. Then select Other from the menu.
6. Select Map/Reduce from the list of perspectives and

press "OK" button.

7. Now that the we installed and configured hadoop

cluster and eclipse plugin i's a time to test the setup by

running a simple project.

VIII.CONCLUSION

We have described support vector machine and naïve

Bayesian classification methods for effective data analysis

results and a set of efficient techniques for incremental

iterative processing computation. Real time experiments

will show that EMRSA and the described classification

methods significantly reduce the run time for refreshing

big data mining results compared to re-computation on

both plain and iterative MapReduce thereby reduces the

workload of the system which results in the efficient and

reliable energy usage.

REFERENCES

[1] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform.

Theory., vol. 28, no. 2, pp. 129–137, Mar. 1982.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association

rules in large databases,” in Proc. 20th Int. Conf. Very Large Data

Bases, 1994, pp. 487–499.

 [3]S. Brin, and L. Page, “The anatomy of a large-scale hypertextual web

search engine,” Comput. Netw. ISDN Syst., vol. 30, no. 1–7, pp.

107–117, Apr. 1998.

 [4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing

on large clusters,” in Proc. 6th Conf. Symp. Opear. Syst. Des.

Implementation, 2004, p. 10.

[5] R. Power and J. Li, “Piccolo: Building fast, distributed programs with

partitioned tables,” in Proc. 9th USENIX Conf. Oper. Syst. Des.

Implementation, 2010, pp. 1–14.

[6] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N.

Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph

processing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,

2010, pp. 135–146.

[7] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: Efficient

iterative data processing on large clusters,” in Proc. VLDB

Endowment, 2010, vol. 3, no. 1–2, pp. 285–296.

[8] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and

G. Fox, “Twister: A runtime for iterative mapreduce,” in Proc. 19th

ACM Symp. High Performance Distributed Comput., 2010, pp. 810–818.

[9] D. Peng and F. Dabek, “Large-scale incremental processing using

distributed transactions and notifications,” in Proc. 9th USENIX

Conf. Oper. Syst. Des. Implementation, 2010, pp. 1–15.

 [10] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum,

“Stateful bulk processing for incremental analytics,” in Proc. 1st

ACM Symp. Cloud Comput., 2010, pp. 51–62.

[11] J. Cho and H. Garcia-Molina, “The evolution of the web and

implications for an incremental crawler,” in Proc. 26th Int. Conf.

Very Large Data Bases, 2000, pp. 200–209.

 [12] C. Olston and M. Najork, “Web crawling,” Found. Trends Inform.

Retrieval, vol. 4, no. 3, pp. 175–246, 2010.

[13] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin,

“Incoop: Mapreduce for incremental computations,” in Proc. 2nd

ACM Symp. Cloud Comput., 2011, pp. 7:1–7:14.

[14] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Priter: A distributed

framework for prioritized iterative computations,” in Proc. 2nd

ACM Symp. Cloud Comput., 2011, pp. 13:1–13:14.

[15] T. J€org, R. Parvizi, H. Yong, and S. Dessloch, “Incremental

recomputations in mapreduce,” in Proc. 3rd Int. Workshop Cloud

Data Manage., 2011, pp. 7–14.

[16] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “imapreduce: A

distributed computing framework for iterative computation,” J. Grid

Comput., vol. 10, no. 1, pp. 47–68, 2012.

[17] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed

datasets: A fault-tolerant abstraction for, in-memory cluster

computing,” in Proc. 9th USENIX Conf. Netw. Syst. Des.

Implementation, 2012, p. 2.

 [18] S. R. Mihaylov, Z. G. Ives, and S. Guha, “Rex: Recursive,

deltabased data-centric computation,” in Proc. VLDB Endowment,

2012, vol. 5, no. 11, pp. 1280–1291.

[19] Y.Zhang,Q.Gao,L.Gao,andC.Wang,“Acceleratelarge-scaleiterative

computation through asynchronous accumulative updates,”

inProc.3rdWorkshopSci.CloudComput.Date,2012,pp.13–22.

[20] C. Yan, X. Yang, Z. Yu, M. Li, and X. Li, “IncMR: Incremental data

processing based on mapreduce,” in Proc. IEEE 5th Int. Conf.

Cloud Comput., 2012, pp.pp. 534–541.

 [21] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.

Hellerstein, “Distributed graphlab: A framework for machine

learning and data mining in the cloud,” in Proc. VLDB Endowment,

2012, vol. 5, no. 8, pp. 716–727.

 [22] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl, “Spinning fast

iterative data flows,” in Proc. VLDB Endowment, 2012, vol. 5, no.

11, pp. 1268–1279.

 [23] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M.

Abadi, “Naiad: A timely dataflow system,” in Proc. 24th ACM

Symp. Oper. Syst. Principles, 2013, pp. 439–455.

 [24] U. Kang, C. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale

graph mining system implementation and observations,” in Proc.

IEEE Int. Conf. Data Mining, 2009, pp. 229–238.

[25] Y. Zhang, S. Chen, Q. Wang, and G. Yu, “i2mapreduce: Incremental

mapreduce for mining evolving big data,” CoRR, vol. abs/

1501.04854, 201.

http://hadoop.apache.org/core/
http://www.eclipse.org/
http://java.sun.com/

