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Abstract: In recent years the data mining applications become stale and obsolete over time. Energy wastage is the 

major problem more of the IT firms. More workload and more computational will increase high energy cost. 

Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid 

the expense of re-computation from scratch. In this paper, we propose Energy Map Reduce Scheduling Algorithm, a 
novel incremental processing extension to Map Reduce, the most widely used framework for mining big data. Map 

reduce is a programming model for processing and generating large amount of data in parallel time. In this paper, 

EMRSA is algorithm provide more energy and less maps. Priority based scheduling is a task will allocate the schedules 

based on necessary and utilization of the Jobs. For reducing the maps, it will reduce the system work so easily energy 

has improved. Final results show the experimental comparison of the different algorithms involved in the paper. 
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I.INTRODUCTION 

 

Nowadays vast quantity of digital data is being 

accumulated in several important areas, including e-

commerce, social network, finance,banking, health care, 

education, and environment. It's become progressively 

popular to mine such massive data so as to achieve 

insights to assist business selections or to produce higher 

customized, higher quality services. In recent years, a 
large variety of computing frameworks [1], [2], [3], [4], 

[5], [6], [7], [8], [9], [10] are developed for large 

information analysis. Among these frameworks, 

mapreduce [1] (with its ASCII text file implementations, 

like Hadoop) is that the most generally utilized in 

production because of its simplicity, generality, and 

maturity. We tend to focus on up map reduce during this 

paper.It is now implemented with the bigdata applications. 

Big data is constantly evolving. Due to the advent of new 

technologies, devices, and communication means like 

social networking sites, the amount of data produced by 
mankind is growing rapidly every year. Though all this 

information produced is meaningful and can be useful 

when processed, it is being neglectedBig data means really 

a big data, it is a collection of large datasets that cannot be 

processed using traditional computing techniques. Big data 

is not merely a data, rather it has become a complete 

subject, which involves various tools, techniques and 

frameworks.As new data and updates are being collected, 

the input data of a big data mining algorithm will 

gradually change, and the computed results will become 

stale and obsolete over time.  
 

Incremental processing is a promising approach to 

refreshing mining results. It utilizes previously saved 

states to avoid the expense of re-computation from scratch. 

In this paper, we propose Energy Map Reduce Scheduling 

Algorithm, a novel incremental processing extension to 

Map Reduce, the most widely used framework for mining  

 

 
big data. MapReduce to support incremental processing. 

However, it has two main limitations. 
 

   

First, Incoop supports only task-level incremental 

processing. . That is, it saves and reuses states at the 

coarseness of individual Map and reduce tasks. every task 

generally processes an oversized number of key-valuepairs 

(kvpairs). If Incoop detects any data changes within the 

input of a task, it'll rerun the whole task. whereas this 

approach simply leverages existing MapReduce options 

for state savings, it should incur a large quantity of 

redundant computation if solely a small fraction of kv-
pairs have modified during a task. Second, Incoop 

supports solely one-step computation, whereas important 

mining algorithms, like PageRank, need iterative 

computation. Incoop would treat every iteration as a 

separate MapReduce job. However, a small number of 

input datachanges could gradually propagate to affect a 

large portion of intermediate states when variety of 
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iterations, leading to expensive global re-computation 

after. we tend to propose i2MapReduce, an extension to 

MapReduce that supports fine-grain incremental 

processing for each onestep and iterative computation. 

 

II.PROPOSED METHODOLOGY 
 

In our current situation energy wastage is the major 

problem more of the IT firms. More workload and more 

computational will increase high energy cost. Main aim of 

ours, to reduce the energy cost from efficient Map 

reducing concepts. To optimize the mining results, we 

evaluate MapReduce using a one-step algorithm and three 

iterative algorithms with diverse computation 

characteristics for efficient mining also improve the 

energy. In this paper we also include the algorithm for 
incremental processing approach named as Energy map 

reduce scheduling algorithm .EMRSA is algorithm 

provide more energy and less maps. Priority based 

scheduling is a task will allocate the schedules based on 

necessary and utilization of the Jobs. For reducing the 

maps, it will reduce the system work so easily energy has 

improve. Final results shows the experimental comaprison 

of the different algorithms involved in the paper. 
 

 
 

III.RELATED WORK 
 

(1) ENERGY MAP REDUCE SCHEDULING 

ALGORITHM 

 

 
 

This paper involves the input files with the .arff extension, 

that is, artributte relation file format. An ARFF (Attribute-

Relation File Format) file is an ASCII text file that 

describes a list of instances sharing a set of attributes. 
ARFF files have two distinct sections. The first section is 

the Header information, which is followed 

the Data information.The Header of the ARFF file 

contains the name of the relation, a list of the attributes 

(the columns in the data), and their types. 
 

Hadoop plugin is implemented in the eclipse environment. 

Hadoop is the flexible and available architecture for large 

scale computation on data processing on a netwrk of 

commodity hardware. Eclipse is an integrated 

development environment (IDE). It contains a base 

workspace and an extensible plug-in system for 
customizing the environment. Here in this paper we are 

implementing hadoop plugin by including tha jar files in 

eclipse and which creates a virtual memory of 1GB. 

 

IV.CLASSIFICATIONS 
 

In this paper we show the efficient methods of classifying 

the evaluvated results by using the following two 

classification methods:  

(i) Support Vector Machine(SVM) 
 

(ii) Naive Bayesian. 
 

(2.1) Support Vector Machine(SVM): 
 

A support vector machine is 

a Classification method.Supervised algorithm used for: 
 

 Classification and Regression (binary and multi-

class problem) 
 

 anomalie detection (one class problem) 
 

An SVM training algorithm builds a model that assigns 

new examples into one category or the other, making it a 

non-probabilistic binary linear classifier. 
 

An SVM model is a representation of the examples as 

points in space, mapped so that the examples of the 

separate categories are divided by a clear gap that is as 

wide as possible.  
 

The support vector machine has been developed as robust 

tool for classification and regression in noisy, complex 

domains. The two key features of support vector machines 
are generalization theory, which leads to a principled way 

to choose an hypothesis; and, kernel functions, which 

introduce non-linearity in the hypothesis space without 

explicitly requiring a non-linear algorithm. 
 

http://gerardnico.com/wiki/data_mining/classification
http://gerardnico.com/wiki/data_mining/supervised
http://gerardnico.com/wiki/data_mining/algorithm
http://gerardnico.com/wiki/data_mining/classification
http://gerardnico.com/wiki/data_mining/regression
http://gerardnico.com/wiki/data_mining/class
http://gerardnico.com/wiki/data_mining/anomaly_detection
https://en.wikipedia.org/wiki/Probabilistic_classification
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Linear_classifier
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 (2.1.1) Support Vectors 
 

 
The black line that separate the two cloud of class is right 

down the middle of a channel. The seperations is in 

2D,aline, in 3D a plane, in four or more dimension an a 

hyper plane. Mathematically, the separation can be found 

by taking the two critical members, one for each class. 

This points are called support vectors.These are the critical 
points (members) that define the channel.The separation is 

then the perpendicular bisector of the line joining these 

two support vectors.That's the idea of support vector 

machine. 
 

The SVM does not fall into the class of „just another 

algorithm‟ as it is based on firm statistical and 

mathematical foundations concerning generalisation and 

optimisation theory. Moreover, it has been shown to 

outperform existing techniques on a wide variety of real 

world problems. SVMs will not solve all of your 

problems, but as kernel methods and maximum margin 
methods are further improved and taken up by the data 

mining community they will become an essential tool in 

any data miner‟s toolkit. 
 

(2.2)  Naive Bayesian 
 

The Naive Bayesian classifier is based on Bayes‟ theorem 

with independence assumptions between predictors. A 

Naive Bayesian model is easy to build, with no 

complicated iterative parameter estimation which makes it 

particularly useful for very large datasets. Despite its 

simplicity, the Naive Bayesian classifier often does 
surprisingly well and is widely used because it often 

outperforms more sophisticated classification methods. 
 

Algorithm: 
 

Bayes theorem provides a way of calculating the posterior 

probability, P(c|x), from P(c), P(x), and P(x|c). Naive 

Bayes classifier assume that the effect of the value of a 

predictor (x) on a given class (c) is independent of the 

values of other predictors. This assumption is called class 

conditional independence. 

 
• P(c|x) is the posterior probability of class (target) given 

predictor (attribute).  

• P(c) is the prior probability of class.  

• P(x|c) is the likelihood which is the probability of 

predictor given class.  

• P(x) is the prior probability of predictor. 
 

Example: 
 

The posterior probability can be calculated by first, 

constructing a frequency table for each attribute against 

the target. Then, transforming the frequency tables to 
likelihood tables and finally use the Naive Bayesian 

equation to calculate the posterior probability for each 

class. The class with the highest posterior probability is 

the outcome of prediction. 

 
 

The zero-frequency problem 
 

Add 1 to the count for every attribute value-class 

combination (Laplace estimator) when an attribute value 

(Outlook=Overcast) doesn‟t occur with every class value 

(Play Golf=no). 
 

Numerical Predictors 
 

Numerical variables need to be transformed to their 

categorical counterparts (binning) before constructing their 
frequency tables. The other option we have is using the 

distribution of the numerical variable to have a good guess 

of the frequency. For example, one common practice is to 

assume normal distributions for numerical variables. 
 

The probability density function for the normal 

distribution is defined by two parameters (mean and 

standard deviation). 

 
 

Example: 

 

  
Humidity 

 
Mean StDev 

Play 

Golf 

yes 86 96 80 65 70 80 70 90 75 79.1 10.2 

no 85 90 70 95 91 
    

86.2 9.7 
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V.SYSTEM ARCHITECTURE 
 

1. MAP REDUCE TASK 

 
Fig. Map Reducing 

 

MapReduce is a programming model and an associated 

implementation for processing and generating large data 

sets with a parallel, distributed algorithm on a cluster. 

MapReduce is the heart of Hadoop®. It is this 

programming paradigm that allows for massive scalability 

across hundreds or thousands of servers in a Hadoop 

cluster. The first is the map job, which takes a set of data 

and converts it into another set of data, where individual 

elements are broken down into tuples (key/value pairs). 
The reduce job takes the output from a map as input and 

combines those data tuples into a smaller set of tuples. As 

the sequence of the name MapReduce implies, the reduce 

job is always performed after the map job. 
 

2.SCHEDULING 
 

 
Fig. scheduling 

 

Process scheduling is an essential part of a 

Multiprogramming operating system. Such operating 

systems allow more than one process to be loaded into the 
executable memory at a time and loaded process shares the 

CPU using time multiplexing. Priority Scheduling. The 

basic idea is straightforward: each process is assigned 

a priority, and priority is allowed to run. Equal-

Priorityprocesses are scheduled in FCFS order. The 

shortest-Job-First (SJF)algorithm is a special case of 

general priority scheduling algorithm. 

 

VI.PREVIOUS STUDY 
 

Resilient dis-tributed datasets: A fault-tolerant abstraction 

for. in-memory cluster computing 
 

Matei Zaharia  Mosharaf Chowdhury  Tathagata Das 
 

We present Resilient Distributed Datasets (RDDs), a 

distributed memory abstraction that allows programmers 

to perform in-memory computations on large clusters 
while retaining the fault tolerance of data flow models like 

MapReduce. RDDs are motivated by two types of 

applications that current data flow systems handle 

inefficiently: iterative algorithms, which are common in 

graph applications and machine learning, and interactive 

data mining tools. In both cases, keeping data in memory 

can improve performance by an order of magnitude. To 

achieve fault tolerance efficiently, RDDs provide a highly 

restricted form of shared memory: they are read-only 

datasets that can only be constructed through bulk 

operations on other RDDs. Our implementation of RDDs 

can outperform Hadoop by 20× for iterative jobs and can 

be used interactively to search a 1 TB dataset with 
latencies of 5–7 seconds. 
 

Drawbacks: 

 Memory Sharing is more challenging one in this project. 

 More Computational Cost.  
 

REX: Recursive, Delta-Based Data-Centric Computation 

Svilen R. Mihaylov Zachary G. Ives Sudipto Guha 
 

In today‟s Web and social network environments, query 

workloads include ad hoc and OLAP queries, as well as 
iterative algorithms that analyze data relationships (e.g., 

link analysis, clustering, learning). Modern DBMSs 

support ad hoc and OLAP queries, but most are not robust 

enough to scale to large clusters. Conversely, “cloud” 

platforms like MapReduce execute chains of batch tasks 

across clusters in a fault tolerant way, but have too much 

overhead to support ad hoc queries. Moreover, both 

classes of platform incur significant overhead in executing 

iterative data analysis algorithms. Most such iterative 

algorithms repeatedly refine portions of their answers, 

until some convergence criterion is reachedWe seek to 
unify the strengths of both styles of platforms, with a focus 

on supporting iterative computations in which changes, in 

the form of deltas, are propagated from iteration to 

iteration, and state is efficiently updated in an extensible 

way.We experimentally validate our techniques, and show 

speedups over the competing methods ranging from 2.5 to 

nearly 100 time .             
 

Drawbacks: 
 

 User-defined functions are also typically harder to write 
for DBMSs than for cloud platforms. 

 High redundant of data 

 High amount of I/O Overhead 

 

VII.SOFTWARE IMPLEMENTATION 
 

 

https://en.wikipedia.org/wiki/Programming_model
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Cluster_(computing)
https://www-01.ibm.com/software/data/infosphere/hadoop/
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Hadoop is a powerful framework that allows for automatic 

parallelezation of computing task. Unfortunately 

programming for it poses certain challenges, namely it is 

really hard to understand and debug Hadoop programs. 

One way to easy things a little bit is to have a simplified 

version of the hadoop cluster that could run locally on the 

developer's machine. This tutorial describes how to set-up 

such cluster on the computer running Microsoft Windows, 

also it describes how to integrate this cluster with 

the Eclipse development environment. Eclipse is a prime 

environment for Java development. 
 

SETTING UP HADOOP PLUGIN: 
 

1. Open another explorer window, either through "My 

Computer" icon or by using the "Start -> Run" menu. 

Navigate to your Eclipse installation and then open 

the "plugin" folder of your Eclipse installation. 

2. Copy the file "hadoop-0.19.1-eclipse-plugin.jar, from 

the Hadoop eclipse plugin folder to 

the Eclipse plugins folder. 
3. Close both explorer windows 

4. Start Eclipse. 

5. Click on the open perspective icon , which is 

usually located in the upper-right corner the eclipse 

application. Then select Other from the menu. 
6. Select Map/Reduce from the list of perspectives and 

press "OK" button. 

7. Now that the we installed and configured hadoop 

cluster and eclipse plugin i's a time to test the setup by 

running a simple project. 
 

 
 

VIII.CONCLUSION 
 

We have described support vector machine and naïve 

Bayesian classification methods for effective data analysis 

results and a set of efficient techniques for incremental 

iterative processing computation. Real time experiments 

will show that EMRSA and the described classification 

methods significantly reduce the run time for refreshing 

big data mining results compared to re-computation  on 

both plain and iterative MapReduce thereby reduces the 

workload of the system which results in the efficient and 

reliable energy usage. 
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